RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1989 Volume 180, Number 11, Pages 1475–1485 (Mi sm1671)

This article is cited in 1 paper

Solvability of some elliptic problems with critical exponent of nonlinearity

I. A. Kuzin


Abstract: The problem
$$ \begin{cases} \Delta_{m,g}u+b(x)u^{m^*-1}+f(x,u)=0\quad\text{in}\ \Omega, \\ u\geqslant0\quad\text{in}\ \Omega, \\ u=0\quad\text{on}\ \partial\Omega, \end{cases} $$
is investigated, where
$$ \Delta_{m,g}u=\nabla_i(g(x)|\nabla u|^{m-2}\nabla_iu), $$
$\Omega$ is an open domain in $\mathbf R^N$, $1<m<N$, $m^\ast-1=\dfrac{Nm}{N-m}-1$ is the critical exponent, and $f(x,u)$ has a growth exponent less than the critical one.
Theorems on the existence of a nontrivial solution of this problem is the space $\mathring W^{1,m}(\Omega)$ and spaces of more regular functions are proved under appropriate assumptions.
Bibliography: 17 titles

UDC: 517.95

MSC: Primary 35J65; Secondary 35J20

Received: 29.07.1988


 English version:
Mathematics of the USSR-Sbornik, 1991, 68:2, 339–349

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026