RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1989 Volume 180, Number 11, Pages 1462–1474 (Mi sm1670)

This article is cited in 16 papers

On the uniqueness of trigonometric series

G. G. Gevorkyan


Abstract: It is proved that
\begin{equation} \frac {a_0}2+\sum_{n=1}^\infty(a_n\cos nx+b_n\sin nx)=\sum_{n=0}^\infty A_n(x) \end{equation}
is the Fourier series of an integrable function $f(x)$ if and only if where $S(x,h)=\sum\limits_{n=0}^\infty A_n(x)\biggl(\dfrac{\sin nh}{nh}\biggr)^2$ and $S^\ast(x)=\sup\limits_{h>0}|S(x,h)|$.
Bibliography: 6 titles.

UDC: 517.51

MSC: 42A63

Received: 06.10.1988


 English version:
Mathematics of the USSR-Sbornik, 1991, 68:2, 325–338

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026