Abstract:
It is proved that
\begin{equation}
\frac {a_0}2+\sum_{n=1}^\infty(a_n\cos nx+b_n\sin nx)=\sum_{n=0}^\infty A_n(x)
\end{equation}
is the Fourier series of an integrable function $f(x)$ if and only if
1) $\lim\limits_{h\to0}S(x,h)=f(x)$ almost everywhere, and