RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1989 Volume 180, Number 10, Pages 1396–1414 (Mi sm1666)

This article is cited in 4 papers

Irreducible orthogonal decompositions in Lie algebras

Pham Huu Tiep


Abstract: The weakened Winnie-the-Pooh problem on irreducible orthogonal decompositions (IOD's) of a simple finite-dimensional complex Lie algebra $\mathscr L$ (i.e., orthogonal decompositions of $\mathscr L$ whose automorphism group acts on $\mathscr L$ absolutely irreducibly is solved). It is proved that Lie algebras of types $A_{p-2}$ ($p$ a prime number, $p\ne2^d+1$), $C_3$ and $E_7$ have no IOD's. All IOD's of Lie algebras of types $A_{p-1}$ ($p$ is a prime number), $G_2$, $F_4$, $E_6$ and $E_8$ are found.
Bibliography: 25 titles.

UDC: 512.54+512.81

MSC: 17B05, 17B20

Received: 21.10.1988


 English version:
Mathematics of the USSR-Sbornik, 1991, 68:1, 257–275

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026