RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1989 Volume 180, Number 8, Pages 1119–1131 (Mi sm1652)

This article is cited in 2 papers

On the asymptotics of the fundamental solution of a parabolic equation in the critical case

E. F. Lelikova


Abstract: The behavior as $t\to\infty$ of the fundamental solution $G(x,s,t)$ of the Cauchy problem for the equation $u_t=u_{xx}-a(x)u$ $(x\in\mathbf R^1$, $t>0)$ is studied in the case when the decay rate of the coefficient $a(x)$ as $x\to\pm\infty$ is critical:
$$ a(x)=a_2^\pm x^{-2}+\sum_{i=3}^\infty a_i^\pm x^{-i}\qquad(x\to\pm\infty). $$
The asymptotic expansion of $G(x,s,t)$ as $t\to\infty$ is constructed and established for all $x,s\in\mathbf R^1$. The fundamental solution decays like a power, and the decay rate is determined by the quantities $a_2^\pm$.
Bibliography: 8 titles.

UDC: 517.95

MSC: 35K15, 35B40

Received: 19.09.1988


 English version:
Mathematics of the USSR-Sbornik, 1990, 67:2, 581–594

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026