RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1989 Volume 180, Number 6, Pages 733–749 (Mi sm1631)

This article is cited in 2 papers

A limit theorem for the Riemann Zeta-function close to the critical line. II

A. P. Laurincikas


Abstract: Let $\Delta_T\to\infty$, $\Delta_T\leq\ln T$, and $\psi_T\to\infty,\ \ln\psi_T=o(\ln\Delta_T)$, as $T\to\infty$, and let $\displaystyle\sigma_T=\frac12+\frac{\psi_T\sqrt{\ln\Delta_T}}{\Delta_T}$. In this paper we study the asymptotic behavior of the Riemann $\zeta$-function on the vertical lines $\sigma_T+it$. We prove that the distribution function
$$ \frac1T\operatorname{mes}\{t\in[0,T],\ |\zeta(\sigma_T+it)|(2^{-1}\ln\Delta_T)^{-1/2}<x\}, $$
converges to a logarithmic normal law distribution function as $T\to\infty$, and that, if $\exp\{\Delta_T\}\leqslant(\ln T)^{\frac23}$, then the measure
$$ \frac1T\operatorname{mes}\{t\in[0,T],\ \zeta(\sigma_T+it)(2^{-1}\ln\Delta_T)^{-1/2}\in A\}, \quad A\in\mathscr B(C), $$
is weakly convergent to a nonsingular measure.
The proof of the first assertion uses the method of moments, and that of the second uses the method of characteristic transformations.
Bibliography: 8 titles

UDC: 511 + 519.2

MSC: Primary 11M06; Secondary 11M26, 11M41

Received: 04.07.1987 and 22.02.1989


 English version:
Mathematics of the USSR-Sbornik, 1990, 67:1, 177–193

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026