RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1996 Volume 187, Number 10, Pages 3–32 (Mi sm162)

This article is cited in 12 papers

Asymptotic solution of the Signorini problem with an obstacle on a thin elongated set

I. I. Argatova, S. A. Nazarovb

a Saint-Petersburg State University
b Admiral Makarov State Maritime Academy

Abstract: The Signorini problem for a Poisson equation is studied subject to onesided constraints imposed on a narrow annular boundary band $\Gamma _\varepsilon$ (of width $O(\varepsilon )$). An asymptotic analysis yields a resultant variational inequality on the contour $\Gamma$ to which $\Gamma _\varepsilon$ contracts as $\varepsilon \to 0$. Approximate solutions of the resultant inequality are derived with varying degree of accuracy and used to construct and justify an asymptotic solution of the original Signorini problem.

UDC: 517.953

MSC: Primary 35C20; Secondary 35B20, 35J85

Received: 10.02.1995

DOI: 10.4213/sm162


 English version:
Sbornik: Mathematics, 1996, 187:10, 1411–1442

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026