RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1996 Volume 187, Number 9, Pages 103–138 (Mi sm160)

This article is cited in 39 papers

Local exact controllability of the two-dimensional Navier–Stokes equations

A. V. Fursikova, Yu. S. Èmanuilovb

a M. V. Lomonosov Moscow State University
b Moscow State Forest University

Abstract: Let $\Omega \subset \mathbb R^2$ be a bounded domain with boundary $\partial \Omega$ consisting of two disjoint closed curves $\Gamma _0$ and $\Gamma _1$ such that $\Gamma _0$ is connected and $\Gamma _1\ne \varnothing$. The Navier–Stokes system $\partial _tv(t,x)-\Delta v+(v,\nabla )v+\nabla p=f(t,x)$, $\operatorname {div}v=0$ is considered in $\Omega$ with boundary and initial conditions $(v,\nu )\big |_{\Gamma _0}=\operatorname {rot}v\big |_{\Gamma _0}=0$ and $v\big|_{t=0}=v_0(x)$ (here $t\in (0,T)$, $x\in \Omega$, and $\nu$ is the outward normal to $\Gamma_0$). Let $\widehat v(t,x)$ be a solution of this system such that $\widehat v$ satisfies the indicated boundary conditions on $\Gamma_0$ and $\|\widehat v(0,\,\cdot \,)-v_0\|_{W^2_2(\Omega )}<\varepsilon$, where $\varepsilon =\varepsilon (\widehat v)\ll 1$. Then the existence of a control $u(t,x)$ on $(0,T)\times \Gamma _1$ with the following properties is proved: the solution $v(t,x)$ of the Navier–Stokes system such that $(v,\nu )\big |_{\Gamma _0}=\operatorname {rot}v\big |_{\Gamma _0}=0$, $v\big |_{t=0}=v_0(x)$ and $v\big |_{\Gamma _1}=u$, coincides with $\widehat v(T,\,\cdot \,)$ for $t = T$, that is, $v(T,x)=\widehat v(T,x)$. In particular, if $f$ and $\widehat v$ do not depend on $t$ and $\widehat v(x)$ is an unstable steady-state solution, then it follows from the above result that one can suppress the occurrence of turbulence by some control $\alpha$ on $\Gamma_1$. An analogous result is established in the case when $\Gamma _0=\partial \Omega$ and $\alpha(t,x)$ is a distributed control concentrated in an arbitrary subdomain $\omega \subset \Omega$.

UDC: 517.977.1

MSC: 76D05, 35B37, 93B05, 93C20

Received: 04.03.1996

DOI: 10.4213/sm160


 English version:
Sbornik: Mathematics, 1996, 187:9, 1355–1390

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026