RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1989 Volume 180, Number 1, Pages 101–118 (Mi sm1599)

This article is cited in 11 papers

On the spectral theory of dissipative difference operators of second order

B. P. Allakhverdiev, G. Sh. Guseinov


Abstract: The boundary conditions at infinity are used in a description of all maximal dissipative extensions of the minimal symmetric operator generated in the Hilbert space $l^2$ by the second-order difference expression
$$ (\Lambda y)_n=a_{n-1}y_{n-1}+b_ny_n+a_ny_{n+1} $$
in the Weyl limit-circle case, where $n$ runs through the integer points on the half-line or the whole line, and the coefficients $a_n$ and $b_n$ are real.
The characteristic functions of the dissipative extensions are computed. Completeness theorems are obtained for the system of eigenvectors and associated vectors.
Bibliography: 13 titles.

UDC: 517.984.48

MSC: Primary 47B39, 47B44, 47A10, 47A20, 47A40; Secondary 47D05, 39A70, 47A67

Received: 25.11.1986 and 17.05.1988


 English version:
Mathematics of the USSR-Sbornik, 1990, 66:1, 107–125

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026