RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2006 Volume 197, Number 7, Pages 29–46 (Mi sm1591)

This article is cited in 4 papers

A generalization of the concept of sectorial operator

M. F. Gorodnii, A. V. Chaikovskii

National Taras Shevchenko University of Kyiv

Abstract: Let $B$ be a Banach space and $G\colon[0,+\infty)\to(0,+\infty)$ a non-increasing function such that $G(t)\to0$ as $t\to\infty$ and $1/G$ is a Lipschitz function on $[0,+\infty)$.
A linear operator $T\colon D(T)\subset B\to B$ is said to be $G$-sectorial if there exist constants $a\in\mathbb R$ and $\varphi\in(0,\pi/2)$ such that the spectrum of $T$ lies in the set
$$ S_{a,\varphi}:=\{z\in\mathbb C\mid z\ne a,\ \lvert\arg(z-a)\rvert<\varphi\} $$
and
$$ \text{there exists } M>0\quad \text{such that } \|R_\lambda(T)\|\le MG(|\lambda-a|)\text{ for }\lambda\notin S_{a,\varphi}, $$
where $R_\lambda(T)$ is the resolvent of the operator $T$.
The properties of the operator exponential and fractional powers of a $G$-sectorial operator are analysed alongside the question of the unique solubility of the Cauchy problem for the linear differential operator with $G$-sectorial operator-valued coefficient.
Bibliography: 8 titles.

UDC: 517.98

MSC: 47Bxx

Received: 23.11.2004 and 17.03.2006

DOI: 10.4213/sm1591


 English version:
Sbornik: Mathematics, 2006, 197:7, 977–995

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026