RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2007 Volume 198, Number 7, Pages 45–62 (Mi sm1483)

This article is cited in 31 papers

A class of integral equations of convolution type

L. G. Arabadzhyanab, A. S. Khachatryanb

a Institute of Mathematics, National Academy of Sciences of Armenia
b Armenian State Teachers' Training University named after Khachatur Abovian

Abstract: Conditions (both necessary and sufficient) for the existence of a non-trivial bounded solution $B$ of the integral equation
$$ B(x)=\int_{-\infty}^{+\infty}\lambda(t)K(x-t)B(t)\,dt,\qquad x\in \mathbb R^1, $$
are obtained for fixed functions $K$ and $\lambda$ satisfying the following conditions:
\begin{gather*} 0\le K\in L_1(\mathbb R^1), \qquad \int_{-\infty}^\infty K(t)\,dt=1, \\ \int_{-\infty}^\infty t^2K(t)\,dt<\infty, \qquad \nu\stackrel{\mathrm{def}}{=}\int_{-\infty}^{+\infty}tK(t)\,dt\ne0, \\ 0\le\lambda(x)\le1, \qquad x\in \mathbb R^1, \qquad \lambda\not\equiv0. \end{gather*}
The existence of the limits $B(\pm\infty)=\lim_{x\to\pm\infty}B(x)$ is proved and a relation between these limits, the first-order moment $\nu$, and the integral norm of $B$ is found.
Bibliography: 9 titles.

UDC: 517.968.2

MSC: Primary 45E10; Secondary 47G10

Received: 26.12.2005 and 02.10.2006

DOI: 10.4213/sm1483


 English version:
Sbornik: Mathematics, 2007, 198:7, 949–966

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026