RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2006 Volume 197, Number 8, Pages 73–100 (Mi sm1482)

This article is cited in 19 papers

Deficiency numbers of symmetric operators generated by block Jacobi matrices

Yu. M. Dyukarev

V. N. Karazin Kharkiv National University

Abstract: Symmetric block Jacobi matrices $J$ and the corresponding symmetric operators $L$ are studied. Let $m$ be the size of the blocks in the matrix $J$. As is known, the deficiency numbers $m_+$ and $m_-$ of the operator $L$ satisfy the inequalities $0\leqslant m_+,m_-\leqslant m$ and achieve their maximum value $m$ simultaneously. Let $m_+$ and $m_-$ be arbitrary integers such that $0\leqslant m_+,m_-\leqslant m-1$. It is shown that there exists a symmetric Jacobi matrix $J$ such that $m_+$ and $m_-$ are the deficiency numbers of the corresponding symmetric operator $L$.
Bibliography: 13 titles.

UDC: 517.983.33+517.984.51

MSC: 47A53

Received: 16.12.2005

DOI: 10.4213/sm1482


 English version:
Sbornik: Mathematics, 2006, 197:8, 1177–1203

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026