RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2007 Volume 198, Number 3, Pages 3–50 (Mi sm1476)

This article is cited in 10 papers

Axiomatic method of partitions in the theory of Nöbeling spaces. I. Improvement of partition connectivity

S. M. Ageev

Belarusian State University, Faculty of Mathematics and Mechanics

Abstract: The Nöbeling space $N_k^{2k+1}$, a $k$-dimensional analogue of the Hilbert space, is considered; this is a topologically complete separable (that is, Polish) $k$-dimensional absolute extensor in dimension $k$ (that is, $\mathrm{AE}(k)$) and a strongly $k$-universal space. The conjecture that the above-listed properties characterize the Nöbeling space $N_k^{2k+1}$ in an arbitrary finite dimension $k$ is proved. In the first part of the paper a full axiom system of the Nöbeling spaces is presented and the problem of the improvement of a partition connectivity is solved on its basis.
Bibliography: 29 titles.

UDC: 515.124.62+515.125

MSC: Primary 55P15, 54F45, 54F65; Secondary 54C55

Received: 09.12.2005 and 29.11.2006

DOI: 10.4213/sm1476


 English version:
Sbornik: Mathematics, 2007, 198:3, 299–342

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026