RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2006 Volume 197, Number 10, Pages 65–86 (Mi sm1433)

This article is cited in 22 papers

Basis properties of a spectral problem with spectral parameter in the boundary condition

N. B. Kerimova, Z. S. Aliyevb

a Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
b Baku State University

Abstract: The following boundary-value problem is considered:
\begin{gather*} y^{(4)}(x)-(q(x){y'}(x))'=\lambda y(x),\qquad 0<x<l, \\ y(0)=y'(0)=y''(l)=0, \qquad (a\lambda+b)y(l)=(c\lambda+d)Ty(l), \end{gather*}
where $\lambda$ is the spectral parameter; $Ty\equiv y'''-qy'$; $q(x)$ is a strictly positive absolutely continuous function on $[0,l]$; $a$, $b$, $c$, and $d$ are real constants such that $bc-ad>0$. The oscillation properties of eigenfunctions are studied and asymptotic formulae for eigenvalues and eigenfunctions are deduced. The basis properties in $L_p(0,l)$, $1<p<\infty$, of the system of eigenfunctions are investigated.
Bibliography: 20 titles.

UDC: 517.927.25

MSC: 34L10

Received: 01.11.2005 and 31.05.2006

DOI: 10.4213/sm1433


 English version:
Sbornik: Mathematics, 2006, 197:10, 1467–1487

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026