RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1996 Volume 187, Number 7, Pages 3–34 (Mi sm142)

This article is cited in 21 papers

On isotopic and discrete realizations of maps of an $n$-dimensional sphere in Euclidean space

P. M. Akhmet'ev

Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation

Abstract: In this paper we consider questions of whether a compact space can be embedded in a Euclidean space. The problem of embedding an '$S^n$-like' compact space in $\mathbb R^{2n}$ is solved affirmatively under certain restrictions on the dimension $n$. We clarify the relations between the realization problem and areas of homotopy theory and differential topology.

UDC: 515.164

MSC: Primary 58C27; Secondary 32S45

Received: 01.11.1994

DOI: 10.4213/sm142


 English version:
Sbornik: Mathematics, 1996, 187:7, 951–980

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026