RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1991 Volume 182, Number 12, Pages 1845–1854 (Mi sm1417)

This article is cited in 1 paper

Asymptotics of the coefficient quasiconformality, and the boundary behavior of a mapping of a ball

M. N. Pantyukhina

M. V. Lomonosov Moscow State University

Abstract: It is shown that if a quasiconformal automorphism $f\colon B^n\to B^n$ of the unit ball in $\mathbf R^n$ $(n\geqslant 2)$ has coefficient of quasiconformality $K_f(r)=\sup\limits_{|x|\le r}k(f,x)$ in the ball of radius $r<1$ with asymptotic growth such that $\int\limits^1K(r)\,dr<\infty$, then it has a radial limit at almost every point of the boundary. This asymptotic growth of $K(r)$ is sharp in a certain sense.

MSC: 30C65

Received: 22.11.1990


 English version:
Mathematics of the USSR-Sbornik, 1993, 74:2, 583–591

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026