RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2005 Volume 196, Number 7, Pages 143–156 (Mi sm1403)

Non-rational divisors over non-degenerate $cDV$-points

D. A. Stepanov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Suppose that $(X,o)$ is a 3-dimensional terminal singularity of type $cD$ or $cE$ defined in ${\mathbb C}^4$ by an equation that is non-degenerate with respect to its Newton diagram. We show that there exists at most one non-rational divisor $E$ over $(X,o)$ with discrepancy $a(E,X)=1$. We also describe all the blow-ups of the singularity $(X,o)$ with non-rational exceptional divisors of discrepancy 1.

UDC: 512.7

MSC: Primary 14E30; Secondary 14J26, 14J30, 14M25

Received: 07.09.2004

DOI: 10.4213/sm1403


 English version:
Sbornik: Mathematics, 2005, 196:7, 1075–1088

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026