RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1991 Volume 182, Number 11, Pages 1657–1668 (Mi sm1400)

On the functions with near values of the least deviation from polynomials and rational functions

Kh. M. Makhmudov

Daghestan State Pedagogical University

Abstract: The author establishes that, for every function $f(z)$ that is analytic inside the unit disk $D$ and belongs to the space $L^p(D)$ with $p>1$, the equation
$$ \rho\stackrel{\operatorname{def}}{=}\varlimsup_{n\to\infty}\sqrt[\leftroot{2}\uproot{4}n]{L^pE_n(f,D)-L^pR_n(f,D)}=\varlimsup_{n\to\infty}\sqrt[\leftroot{2}\uproot{4}n]{L^pE_n(f,D)} $$
is satisfied, where $L^pE_n(f,D)$ and $L^pR_n(f,D)$ are the minimal deviations of $f$ from polynomials of degree at most $n$ and from rational functions of order at most $n$. In particular, $\rho<1$ if and only if $f$ can be continued analytically over the disk $|z|<1/\rho$. There is also a similar proposition for the approximation of functions in the spaces $H^p$, $p>1$.

UDC: 517.53

MSC: 30E10, 41A10, 41A20

Received: 15.04.1991


 English version:
Mathematics of the USSR-Sbornik, 1993, 74:2, 405–417

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026