RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1991 Volume 182, Number 11, Pages 1613–1634 (Mi sm1398)

This article is cited in 1 paper

On finite-dimension Chebyshev subspaces of spaces with an integral metric

N. K. Rakhmetov

M. V. Lomonosov Moscow State University

Abstract: This is a detailed study of the problem of the existence and characterization of finite-dimensional Chebyshev subspaces of the spaces $\varphi(L)$ and $L^{p(t)}$ on the interval $I=[-1,1]$, where $\varphi(t)$ is an even nonnegative continuous nondecreasing function on the half-line $[0,+\infty)$, and the function $p(t)$ is measurable, finite, and positive almost everywhere on $I$. If $\varphi$ is an $N$-function, it is characterized as a Chebyshev subspace of the Orlicz spaces with the Luxemburg norm.

UDC: 517.518.8

MSC: Primary 41A52, 41A10, 41A50; Secondary 46E30

Received: 03.04.1991


 English version:
Mathematics of the USSR-Sbornik, 1993, 74:2, 361–380

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026