RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1991 Volume 182, Number 11, Pages 1559–1587 (Mi sm1392)

This article is cited in 15 papers

Spectral synthesis in a complex domain for a differential operator with constant coefficients. I: A duality theorem

I. F. Krasichkov-Ternovskii

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences

Abstract: The problem of spectral synthesis in a complex domain for a differential operator with symbol $\pi(z)=z^q+a_1z^{q-1}+\dots+a_q$, $a_i\in\mathbf C$, is reduced to the problem of a local description of the closed submodules of a module (of entire functions of exponential type) over the ring $\mathbf C[\pi]$ of polynomials of the form $c_0+c_1\pi+\dots+c_n\pi^n$, $c_i\in\mathbf C$.

UDC: 517.5

MSC: Primary 43A45; Secondary 34L99

Received: 04.06.1991


 English version:
Mathematics of the USSR-Sbornik, 1993, 74:2, 309–335

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026