RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1991 Volume 182, Number 10, Pages 1430–1445 (Mi sm1381)

This article is cited in 4 papers

Rationality of fields of invariants of some four-dimensional linear groups, and an equivariant construction related to the Segre cubic

I. Ya. Kolpakov-Miroshnichenkoa, Yu. G. Prokhorovb

a M. V. Lomonosov Moscow State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Let $G\subset SL(4)$ be a finite primitive linear group. We prove that if $G$ contains a normal subgroup of order 32 then the quotient variety $\mathbf P^3/G$ is birationally isomorphic to $X/G$, where $X$ is the Segre cubic. We also prove the rationality of $\mathbf P^3/G$ for a large class of such groups (in particular, solvable groups).

UDC: 512.776

MSC: Primary 14E05, 14L35, 14H45; Secondary 14H35

Received: 28.05.1990


 English version:
Mathematics of the USSR-Sbornik, 1993, 74:1, 169–183

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026