Abstract:
Semicontinuous real functions are considered. The following property is established for the Dini directional semiderivative and the Dini semidifferential (the subdifferential). If at some point the semiderivative is positive in a convex cone of directions, then arbitrarily close to the point under consideration there exists a point at which the function is subdifferentiable and has a subgradient belonging to the positively dual cone. This result is used in the theory of the Hamilton–Jacobi equations to prove the equivalence of various types of definitions of generalized solutions.