RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1992 Volume 183, Number 12, Pages 117–124 (Mi sm1354)

This article is cited in 1 paper

The structure of the congruence kernel for $\mathrm{SL}_2$ in the case of a global field of positive characteristic

P. A. Zalesskii


Abstract: In this paper the following description of the congruence kernel $C(\mathrm{SL}_2,\mathcal O)$ is given, where $\mathcal O$ is the coordinate ring of an affine curve obtained by removing a point from a projective curve over a finite field $k_0$.
Theorem. {\it $C(\mathrm{SL}_2,\mathcal O)=(*_{x\in X}H_x)*P$ is the free profinite product over a separable space $X$ of groups $H_x$ that are isomorphic to the direct product $\prod\mathbb{Z}/p\mathbb{Z}$ of a continuum of groups of order $p=\operatorname{char}(k_0)$, and a separable projective group $P$ each of whose open subgroups is free. }
The proof uses a general result on normal subgroups of free profinite products.

UDC: 512.546.37

MSC: Primary 20H05, 11F06; Secondary 05C05, 05C25


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1994, 77:2, 489–495

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026