RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1991 Volume 182, Number 4, Pages 543–567 (Mi sm1310)

This article is cited in 24 papers

Periodic factor of hyperbolic groups

A. Yu. Ol'shanskii

M. V. Lomonosov Moscow State University

Abstract: It is proved that for any noncyclic hyperbolic torsion-free group $G$ there exists an integer $n(G)$ such that the factor group $G/G^n$ is infinite for any odd $n\geqslant n(G)$. In addition, $\bigcap_{i=1}^\infty G^i=\{1\}$. (Here $G^i$ is the subgroup generated by the $i$th powers of all elements of the groups $G$.)

UDC: 512.543

MSC: Primary 20F50, 20F32, 20E99; Secondary 20F06

Received: 17.05.1990


 English version:
Mathematics of the USSR-Sbornik, 1992, 72:2, 519–541

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026