RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1990 Volume 181, Number 11, Pages 1510–1524 (Mi sm1242)

This article is cited in 25 papers

Spectral functions of a canonical system of order $2n$

A. L. Sakhnovich

Institute of Hydromechanics Academy of Science of UkrSSR

Abstract: The author describes a set of pseudospectral functions of the canonical system of differential equations
$$ \frac{dW(x,\lambda)}{dx}=i\lambda JH(x)W(x,\lambda), \qquad W(0,\lambda)=E_{2n}, $$
where $0\leqslant x\leqslant l<\infty$, $H(x)=H^*(x)\geqslant 0$, $J=\begin{bmatrix}0&E_n\\E_n&0\end{bmatrix}$.
In terms of the Hamiltonians $H(x)$, conditions are given under which the pseudospectral functions are spectral functions.

UDC: 517.98

MSC: Primary 34L05; Secondary 34B24

Received: 20.01.1989


 English version:
Mathematics of the USSR-Sbornik, 1992, 71:2, 355–369

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026