RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1990 Volume 181, Number 9, Pages 1183–1195 (Mi sm1216)

This article is cited in 13 papers

Some results on solvability of ordinary linear differential equations in locally convex spaces

S. A. Shkarin

M. V. Lomonosov Moscow State University

Abstract: Let $\Gamma$ be the class of sequentially complete locally convex spaces such that an existence theorem holds for the linear Cauchy problem $\dot x=Ax$, $x(0)=x_0$, with respect to functions $x\colon\mathbf R\to E$. It is proved that if $E\in\Gamma$, then $E\times\mathbf R^A\in\Gamma$ for an arbitrary set $A$. It is also proved that a topological product of infinitely many infinite-dimensional Fréchet spaces, each not isomorphic to $\mathbf R^\infty$, does not belong to $\Gamma$.

UDC: 517.9

MSC: Primary 34A10, 34G10; Secondary 46A05

Received: 22.06.1989


 English version:
Mathematics of the USSR-Sbornik, 1992, 71:1, 29–40

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026