RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1990 Volume 181, Number 8, Pages 1048–1060 (Mi sm1208)

This article is cited in 9 papers

A problem of Salem and Zygmund on the smoothness of an analytic function that generated a Peano curve

A. S. Belov

Ivanovo State University

Abstract: Let $\gamma_0$ denote the supremum of the numbers $\gamma\in(0,1)$ for which there is a function $F\in\operatorname{Lip}\gamma$ on the closed unit disk $D=\{z:|z|\leqslant 1\}$ such that $F$ is analytic inside $D$ and the set $\{F(z):|z|=1\}$ possesses an interior point. In 1945, Salem and Zygmund proved that $\gamma_0\in(0,1/2]$, and asked for the value of $\gamma_0$. It is proved in this paper that $\gamma_0=1/2$.

UDC: 517.5

MSC: 30B30, 26A30

Received: 30.05.1989


 English version:
Mathematics of the USSR-Sbornik, 1991, 70:2, 485–497

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026