RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1990 Volume 181, Number 6, Pages 723–742 (Mi sm1137)

This article is cited in 9 papers

Weighted shift operator, spectral theory of linear extensions, and the Multiplicative Ergodic Theorem

Yu. D. Latushkina, A. M. Stepinb

a Sea Gidrophysical Institute Academy of Sciences of UkSSR
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The author studies the weighted shift operator $(T_af)(x)=\rho^{1/2}(x)a(\alpha^{-1}x)f(\alpha^{-1}x)$, acting in the space $L_2(X,\mu;H)$ of functions on a compact metric space $X$ with values in a separable Hilbert space $H$. Here $\alpha$ is a homeomorphism of $X$ with a dense set of nonperiodic points, the measure $\mu$ is quasi-invariant with respect to $\alpha$, $\rho=\dfrac{d\mu\alpha^{-1}}{d\mu}$, and $a$ is a continuous function on $X$ with values in the algebra of bounded operators on $H$. It is established that the dynamic spectrum of the extension $\hat\alpha(x,v)=(\alpha x,a(x)v)$, $x\in X$, $v\in H$ can be obtained from the spectrum $\sigma(T_a)$ in $L_2$ by taking the logarithm of $|\sigma(T_a)|$. Using the Riesz projections for $T_a$, the spectral subbundles for $\hat\alpha$ are described. In the case that $a$ takes compact values, the dynamic spectrum can be computed in terms of the exact Lyapunov exponents of the cocycle constructed from $a$ and $\alpha$, corresponding to measures ergodic for $\alpha$ on $X$.

UDC: 517.9

MSC: Primary 47B37, 47A35, 47A10; Secondary 28D99, 34C35

Received: 31.01.1989


 English version:
Mathematics of the USSR-Sbornik, 1991, 70:1, 143–163

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026