RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2006 Volume 197, Number 10, Pages 57–64 (Mi sm1134)

Semiampleness theorem for weak log Fano varieties

I. V. Karzhemanov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The semiampleness of the divisor $-(K_X+S)$ is proved for a pair $(X,S)$ with purely log terminal $\mathbb Q$-factorial singularities, where $X$ is a three-dimensional normal projective algebraic variety and $S\subset X$ is a normal surface such that the divisor $-(K_X+S)$ is nef and big.
Bibliography: 8 titles.

UDC: 512.763

MSC: Primary 14E30; Secondary 14E05, 14G30

Received: 17.08.2005

DOI: 10.4213/sm1134


 English version:
Sbornik: Mathematics, 2006, 197:10, 1459–1465

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026