RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1992 Volume 183, Number 5, Pages 63–78 (Mi sm1123)

This article is cited in 4 papers

Approximation of monotone functions by monotone polynomials

I. A. Shevchuk


Abstract: The following theorem is proved for the case $k+r>2$.
Theorem. If $k$, $r\in{\mathbb N}$, $I:=[-1,1]$, and the function $f=f(x)$ is nondecreasing on $I$ and has $r$ continuous derivatives, then for each positive integer $n\geqslant r + k - 1$ there is an algebraic polynomial $P_n = P_n(x)$ of degree $\leqslant n$ that is nondecreasing on $I$ and such that for all $x\in I$
$$ |f(x)-P_n(x)|\leqslant c\biggl({1\over n^2}+{\sqrt {1-x^2}\over n}\,\biggr)^r \omega _k\biggl(f^{(r)};{1\over n^2}+{\sqrt{1-x^2}\over n}\,\biggr), \qquad c=c(r,k), $$
where $\omega_k(f^{(r)};\,t)$ is the $k$th-order modulus of continuity of the function $f^{(r)}=f^{(r)}(x)$.

UDC: 517.5

MSC: Primary 41A10, 41A25; Secondary 26A15

Received: 02.03.1990 and 15.11.1991


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1993, 76:1, 51–64

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026