RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2007 Volume 198, Number 5, Pages 33–44 (Mi sm1110)

This article is cited in 1 paper

Special factorization of a non-invertible integral Fredholm operator of the second kind with Hilbert–Schmidt kernel

G. A. Grigoryan

Institute of Mathematics, National Academy of Sciences of Armenia

Abstract: The problem of the special factorization of a non-invertible integral Fredholm operator $I-K$ of the second kind with Hilbert–Schmidt kernel is considered. Here $I$ is the identity operator and $K$ is an integral operator:
$$ (Kf)(x)\equiv\int_0^1 \mathrm K(x,t)f(t)\,dt, \qquad f \in L_2[0,1]. $$

It is proved that $\lambda=1$ is an eigenvalue of $K$ of multiplicity $n\geqslant1$ if and only if $I-K=W_{+,1}\circ\dots\circ W_{+,n}\circ (I-K_n)\circ W_{-,1}\circ\dots\circ W_{-,n}$, where the $W_{+,j}$, $W_{-,j}$, $j=1,\dots,n$, are bounded operators in $L_2[0,1]$ of a special structure that are invertible from the left and the right, respectively.
Bibliography: 7 titles.

UDC: 517.968

MSC: 47G10, 47A68

Received: 04.07.2005 and 02.08.2006

DOI: 10.4213/sm1110


 English version:
Sbornik: Mathematics, 2007, 198:5, 627–637

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026