RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2006 Volume 197, Number 7, Pages 77–86 (Mi sm1105)

This article is cited in 3 papers

Approximation of functions in $H^p$, $0<p\le1$, by generalized Riesz means with fractional exponents

S. G. Pribegin

Odessa National Maritime University

Abstract: For $H^p$ functions in the unit disc, $0<p\le1$, it is shown that the rate of approximation of the boundary function in the $L^p$ metric by the generalized Riesz means $R_\varepsilon^{l,\alpha}(f,z)$, $\varepsilon>0$, $(l+1)p>1$, $(\alpha+1)p>1$, is equivalent to the modulus of smoothness of fractional order $l$. This is a known result in the case of positive integer $l$.
Bibliography: 8 titles.

UDC: 517.5

MSC: Primary 41A25, 30D55; Secondary 26A15

Received: 20.12.2004 and 01.07.2005

DOI: 10.4213/sm1105


 English version:
Sbornik: Mathematics, 2006, 197:7, 1025–1035

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026