RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1992 Volume 183, Number 9, Pages 105–146 (Mi sm1074)

This article is cited in 6 papers

On a class of unconditional bases in Hilbert spaces and on the problem of similarity of dissipative Volterra operators

G. M. Gubreev


Abstract: Let $B$ be a completely nonselfadjoint dissipative Volterra operator acting in a separable Hilbert space $\mathfrak Y$ whose resolvent $(I-\lambda B)^{-1}$ has finite exponential type. Further, let $\mathfrak{L}=(B-B^*)\mathfrak Y$, $y\in\mathfrak{L}$, and $y(\lambda)=(I-\lambda B)^{-1}y$. In this article conditions are determined on the operator $B$, the vector $y$, and the sequence $\Lambda=\{\lambda_k\}_{-\infty}^{+\infty}$ under which the family
$$ \{y(\lambda_k):\lambda_k\in \Lambda\}, \qquad \inf_{\lambda_k}\operatorname{Im}\lambda_k>0, $$
forms an unconditional basis in the space $\mathfrak Y$. Moreover, a new approach is considered for the problem of similarity of dissipative Volterra operators, based on a study of the basis properties of this system of vectors.

UDC: 517.5

MSC: Primary 46B15, 47B44, 45D05; Secondary 30B50

Received: 09.07.1990


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1994, 77:1, 93–126

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026