RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1992 Volume 183, Number 8, Pages 47–84 (Mi sm1063)

This article is cited in 60 papers

On passage to the limit in nonlinear variational problems

V. V. Zhikov


Abstract: A study is made of variational problems with convex Lagrangians $f(x,\xi)$ subordinate to a nonstandard estimate
\begin{gather*} -c_0+c_1|\xi|^{\alpha_1}\leqslant f(x,\xi)\leqslant c_0+c_2|\xi|^{\alpha_2}, \\ c_0\geqslant 0, c_1>0, \quad c_2>0, \quad 1<\alpha_1\leqslant\alpha_2. \end{gather*}
The concepts of $\Gamma_1$-convergence and $\Gamma_2$-convergence are introduced for Lagrangians corresponding to boundary value problems of the first and second types. It is proved that the indicated class of Lagrangians is compact with respect to $\Gamma_1$-convergence and with respect to $\Gamma_2$-convergence. Applications to compactness theorems and to various concrete averaging problems are given.

UDC: 517.97

MSC: 49J45

Received: 05.07.1991


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1993, 76:2, 427–459

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026