RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2025 Volume 216, Number 11, Pages 135–149 (Mi sm10292)

Unique expansions in number systems via refinement equations

S. V. Konyagina, V. Yu. Protasovbc, A. L. Talambutsaad

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, University of L'Aquila, L'Aquila, Italy
c Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
d Laboratory of Theoretical Computer Science, National Research University Higher School of Economics, Moscow, Russia

Abstract: Using subdivision scheme theory, we develop a criterion to check if each natural number has at most one representation in the $n$-ary number system with a set of nonnegative integer digits $A=\{a_1,a_2,\dots, a_n\}$ that contains zero. This uniqueness property is shown to be equivalent to a certain restriction on the zeros of the trigonometric polynomial $\sum_{k=1}^n e^{-2\pi i a_k t}$. From this criterion, under a natural condition of irreducibility for $A$, we deduce that in case of a prime number $n$ uniqueness holds if and only if the digits of $A$ are distinct modulo $n$, whereas for any composite $n$ we show that the latter condition is not necessary. We also establish a connection of this uniqueness with the problem of semigroup freeness for affine integer functions of equal integer slope; in combination with the two criteria, this allows us to fill a gap in the work of Klarner on the question of Erdős about the densities of affine integer orbits and establish a simple algorithm to check the freeness and the positivity of density when the slope is a prime number.
Bibliography: 29 titles.

Keywords: number system, free semigroup, refinement equation, subdivision scheme, Borel measure.

MSC: 11B75, 20M05, 39A06

Received: 22.02.2025 and 20.08.2025

DOI: 10.4213/sm10292


 English version:
Sbornik: Mathematics, 2025, 216:11, 1614–1627

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026