RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2025 Volume 216, Number 10, Pages 42–61 (Mi sm10277)

On maximal Calderón–Zygmund operators and Weyl multipliers

G. A. Karagulyanab, M. T. Laceyc, Kh. V. Navoyana

a Institute of Mathematics of National Academy of Sciences of RA, Yerevan, Republic of Armenia
b Faculty of Mathematics and Mechanics, Yerevan State University, Yerevan, Republic of Armenia
c School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA

Abstract: Let $T_k$, $k=1,2,\dots,N$, be a sequence of bounded operators on $L^p$, $1<p<\infty$, and let $T^*(f)=\max_{1\le k\le N}|T_k(f)|$. For some choices of $T_k$ the problem of finding the optimal constant $c(N)$ for the bound
$$ \|T^*\|_{L^p\to L^p}\lesssim c(N) \max_{1\le k\le N}\|T_k\|_{L^p\to L^p} $$
is of interest. We consider this problem for Calderón–Zygmund operators. It was proved by the two first-named authors that $c(N)\lesssim \log N$ when the $T_k$ are general Calderón–Zygmund operators with uniformly bounded parameters. In this note we consider Calderón–Zygmund operators with kernels having a certain dyadic decomposition. We prove that $c(N)\lesssim\sqrt{\log N}$ for such operators. Applying this bound, we prove that the sequence $\log n$ is an almost everywhere convergence Weyl multiplier for any rearranged dyadic block trigonometric polynomials.
Bibliography: 46 titles.

Keywords: Calderón–Zygmund operator, maximal operator, logarithmic bound, Weyl multipliers, trigonometric polynomials.

MSC: Primary 42A20, 42B20; Secondary 42B25

Received: 10.02.2025 and 16.04.2025

DOI: 10.4213/sm10277


 English version:
Sbornik: Mathematics, 2025, 216:10, 1375–1392

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026