RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2025 Volume 216, Number 10, Pages 77–100 (Mi sm10214)

Prismatic cohomology and de Rham–Witt forms

S. V. Molokov

Faculty of Mathematics, National Research University Higher School of Economics, Moscow, Russia

Abstract: For an arbitrary prism $(A, d)$ we construct an analogue of Fontaine's map $W_r(A/d) \to A/d\phi(d)\cdots\phi^{r-1}(d)$. Then we define a canonical map from the de Rham–Witt forms to the prismatic cohomology in the perfect case and prove that it is an isomorphism. Using this result, we obtain an explicit description of the prismatic cohomology $H^i((S/A)_\Delta,\mathcal{O}_\Delta/d\phi(d)\cdots\phi^{n-1}(d))$, where $S$ is the $p$-completion of a polynomial algebra over $A/d$.
Bibliography: 16 titles.

Keywords: prisms, prismatic cohomology, Witt vectors, de Rham–Witt forms.

MSC: 14F30, 14F40

Received: 12.10.2024 and 06.02.2025

DOI: 10.4213/sm10214


 English version:
Sbornik: Mathematics, 2025, 216:10, 1406–1427

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026