RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2025 Volume 216, Number 9, Pages 114–162 (Mi sm10108)

Hyperelliptic tangential covers and even elliptic finite-gap potentials, back and forth

A. Treibich

Departamento de Matemática y Aplicaciones, Centro Universitario Regional del Este, Universidad de la República, Montevideo, Uruguay

Abstract: Let $\pi\colon \Gamma \to X$ denote a degree $n$ cover of an elliptic curve, marked at a smooth point $p\in \Gamma$. Consider the (rational) Abel map $\mathrm{Ab}_p\colon \Gamma \to \operatorname{Jac}\Gamma$ and the dual map $\pi^\vee:= \mathrm{Ab}_p\circ\pi^* \colon X \to \operatorname{Jac}\Gamma$ into the Jacobian variety of $\Gamma$. We then call $\pi$ a hyperelliptic tangential cover (ht-cover) if and only if $\Gamma$ is a hyperelliptic curve, $p\in \Gamma$ is a Weierstrass point and the images of $\Gamma$ and $X$ in $\operatorname{Jac}\Gamma$ are tangent at its origin. To any such ht-cover $\pi$ we attach an integer vector $\mu \in \mathbb{N}^4$, the so-called type, satisfying $\mu_0+1\equiv \mu_1 \equiv \mu_2 \equiv \mu_3 \equiv n \mod2$ and $2n+1-\sum_i \mu_i^2=4d$, for some $d\in \mathbb{N}$. Whenever $\Gamma$ is smooth, the type $\mu$ gives the number of Weierstrass points of $\Gamma$ (different from $p$) over each half-period $\omega_i$ of $X$ ($i=0,\dots,3$). We denote by $\mathcal{S}\mathcal{C}_X(\mu,d)$ the set of degree $n$ ht-covers of type $\mu$. Then the even, doubly-periodic, finite-gap potentials associated to $\mathcal{S}\mathcal{D}_X(\mu,d):=\{(\pi,\xi)\colon\pi\in\mathcal{S}\mathcal{C}_X(\mu,d),\, \xi\text{ is a theta-characteristic of }\pi\}$ decompose as
$$ u_\xi(x)=\sum_0^3\alpha_i(\alpha_i+1)\wp(x-\omega_i)+2\sum_{j=1}^m \bigl(\wp(x-\rho_j)+\wp(x+\rho_j)\bigr) $$
for some $(\alpha,m)\in \mathbb{N}^4\times \mathbb{N}$ such that $\sum_i\alpha_i(\alpha_i+1)+4m=\sum_i\mu_i^2 +4d$.
The set of such potentials, denoted by $\mathcal{P}ot_X(\alpha,m)$, is finite, and we have a bijection
$$ (\pi,\xi) \in \bigcup_{(\mu,d)}\mathcal{S}\mathcal{D}_X(\mu,d)\mapsto u_\xi \in \bigcup_{(\alpha,m)}\mathcal{P}ot_X(\alpha,m)\,. $$

The problem at stake is to find its inverse map, as well as the cardinals $\#\mathcal{S}\mathcal{C}_X(\mu,d)$ and $\#\mathcal{P}ot_X(\alpha,m)$. The latter problem has been studied thoroughly for $\mathcal{P}ot_X(\alpha,0)$ and $\mathcal{P}ot_X(\alpha,1)$ (for any $\alpha \in \mathbb{N}^4$). In this article we prove that $\#\mathcal{P}ot_X(\alpha,2)=27$ for a generic elliptic curve $X$ and find the inverse image of $\mathcal{P}ot_X(\alpha,m)$. Bounds for the types and arithmetic genera of their spectral data follow. We conclude with a conjectural recursive formula in $d\in \mathbb{N}$ for $\#\mathcal{P}ot_X(\alpha,d)$ and $\#\mathcal{S}\mathcal{C}_X(\mu,d)$.
This article is dedicated to the memory of Jean Louis Verdier and Igor M. Krichever.
Bibliography: 30 titles.

Keywords: even elliptic finite-gap potential, hyperelliptic tangential cover, theta-characteristic, weak del Pezzo surface, blowing-up of a point.

MSC: Primary 14H52, 14H55, 37J38; Secondary 14E20, 35Q53

Received: 18.04.2024 and 10.12.2024

DOI: 10.4213/sm10108


 English version:
Sbornik: Mathematics, 2025, 216:9, 1297–1338

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026