RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2024 Volume 215, Number 10, Pages 58–88 (Mi sm10081)

This article is cited in 1 paper

Some functionals for random walks and critical branching processes in an extremely unfavourable random environment

V. A. Vatutina, C. Dongb, E. E. Dyakonovaa

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Xidian University, Xi'an, P. R. China

Abstract: Let $\{S_{n},\,n\geq 0\}$ be a random walk whose increment distribution belongs without centering to the domain of attraction of an $\alpha$-stable law, that is, there are scaling constants $a_{n}$ such that the sequence $S_{n}/a_{n}$, $n=1,2,\dots$, converges weakly, as $n\to\infty$, to a random variable having an $\alpha$-stable distribution. Let $S_{0}=0$,
$$ L_{n}:=\min (S_{1},\dots,S_{n})\quad\text{and}\quad\tau_{n}:=\min \{ 0\leq k\leq n\colon S_{k}=\min (0,L_{n})\}. $$
Assuming that $S_{n}\leq h(n)$, where $h(n)$ is $o(a_{n})$ as $n\to\infty$ and the limit $\lim_{n\to\infty}h(n)\in [-\infty,+\infty]$ exists, we prove several limit theorems describing the asymptotic behaviour of the functionals
$$ \mathbf{E}[ e^{\lambda S_{\tau_{n}}};\, S_{n}\leq h(n)], \qquad \lambda>0, $$
as $n\to\infty$. The results obtained are applied to study the survival probability of a critical branching process evolving in an extremely unfavourable random environment.
Bibliography: 15 titles.

Keywords: stable random walks, branching processes, survival probability, extreme random environment.

MSC: Primary 60G50; Secondary 60J80, 60K37

Received: 13.02.2024 and 01.07.2024

DOI: 10.4213/sm10081


 English version:
Sbornik: Mathematics, 2024, 215:10, 1321–1350

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026