RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2025 Volume 216, Number 8, Pages 5–21 (Mi sm10045)

This article is cited in 2 papers

Bojarski–Meyers estimate for a solution to the Zaremba problem for Poisson's equations with drift

Yu. A. Alkhutova, G. A. Chechkinbcd

a Vladimir State University, Vladimir, Russia
b Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
c Institute of Mathematics with Computing Centre, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
d Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

Abstract: An estimate for the increased integrability is obtained for the gradient of the solution to the Zaremba problem for Poisson's equation with lower-order terms in a bounded domain with Lipschitz boundary and frequent alternation of Dirichlet and Neumann conditions.
Bibliography: 22 titles.

Keywords: Bojarski–Meyers estimates, embedding theorems, Zaremba problem.

MSC: Primary 35J25; Secondary 35A01, 35A02, 35B45

Received: 10.12.2023 and 07.08.2024

DOI: 10.4213/sm10045


 English version:
Sbornik: Mathematics, 2025, 216:8, 1021–1036

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026