RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2024 Volume 215, Number 8, Pages 66–94 (Mi sm10033)

On the convergence sets of operator sequences on spaces of homogeneous type

G. A. Karagulyanab

a Faculty of Mathematics and Mechanics, Yerevan State University, Yerevan, Republic of Armenia
b Institute of Mathematics of National Academy of Sciences of RA, Yerevan, Republic of Armenia

Abstract: We consider sequences of operators $U_n\colon L^1(X)\to M(X)$, where $X$ is a space of homogeneous type. Under some conditions on the operators $U_n$ we give a complete characterization of convergence (divergence) sets of sequences of functions $U_n(f)$, where $f\in L^p(X)$, $1\le p\le \infty$. The results are applied to characterize the convergence sets of some specific operator sequences in classical analysis.
Bibliography: 44 titles.

Keywords: convergence sets, divergence sets, operator sequences, spaces of homogeneous type, quasi-distance.

MSC: 40A30, 42A20

Received: 20.11.2023 and 21.04.2024

DOI: 10.4213/sm10033


 English version:
Sbornik: Mathematics, 2024, 215:8, 1065–1090

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026