RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2024 Volume 215, Number 5, Pages 71–95 (Mi sm10021)

This article is cited in 2 papers

Lower and upper bounds for the minimum number of edges in some subgraphs of the Johnson graph

N. A. Dubinina, E. A. Neustroevaa, A. M. Raigorodskiiabcd, Ya. K. Shubina

a Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Adyghe State University, Maikop, Russia
d Buryat State University named after D. Banzarov, Ulan-Ude, Russia

Abstract: Lower and upper bounds are derived for the minimum number of edges in subgraphs of the graph $G(n,3,1)$ induced by $l$ vertices, where $l \sim cn^2$. The results in this work improve the estimates for this quantity that were obtained previously in the case under study.
Bibliography: 16 titles.

Keywords: distance graphs, Johnson graphs, extremal graph theory.

MSC: 05C35, 05C69

Received: 31.10.2023 and 05.12.2023

DOI: 10.4213/sm10021


 English version:
Sbornik: Mathematics, 2024, 215:5, 634–657

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026