RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2024 Volume 215, Number 6, Pages 29–40 (Mi sm10011)

This article is cited in 1 paper

Density of the sums of shifts of a single function in the $L_2^0$ space on a compact Abelian group

N. A. Dyuzhinaab

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia

Abstract: Let $G$ be a nontrivial compact Abelian group. The following result is proved: a real-valued function on $G$ such that the sums of shifts of it are dense in the $L_{2}$-norm in the corresponding real space of mean zero functions exists if and only if the group $G$ is connected and has an infinite countable character group.
Bibliography: 13 titles.

Keywords: density, sums of shifts, compact groups, space $L_{2}$.

MSC: 41A46, 43A15

Received: 08.10.2023

DOI: 10.4213/sm10011


 English version:
Sbornik: Mathematics, 2024, 215:6, 743–754

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026