RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2025 Volume 216, Number 1, Pages 96–108 (Mi sm10001)

Slim exceptional sets of Waring–Goldbach problem: two squares, two cubes and two biquadrates

Sh. Tian

Department of Mathematics, Tongji University, Shanghai, P. R. China

Abstract: Let $N$ be a sufficiently large number. We show that, with at most $O(N^{3/32+\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_1^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4$, where $p_1, p_2, \dots, p_6$ are prime numbers. This is an improvement of the result $O(N^{7/18+\varepsilon})$ due to Zhang and Li.
Bibliography: 13 titles.

Keywords: Waring–Goldbach problem, Hardy–Littlewood method, exceptional set.

MSC: 11P05, 11P55

Received: 21.09.2023 and 27.02.2024

DOI: 10.4213/sm10001


 English version:
Sbornik: Mathematics, 2025, 216:1, 87–98

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026