RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2023 Volume 26, Number 3, Pages 277–285 (Mi sjvm844)

Study of superexponential growth of the mean partile flux by Monte Carlo method

G. Z. Lotovaab, G. A. Michailovba

a Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University

Abstract: A comparative analysis of two algorithms for estimation of weighted mean particle flux - «by particles» and «by collisions» - is made on the basis of test problem solving for a single-speed particle propagation process with scattering and multiplication in a random medium. It is shown that the first algorithm is preferable for a simple estimation of the mean flux and the second one, for estimation of the parameters of a possible superexponential flux growth. Two models of the random medium are considered: a chaotic «Voronoi mosaic» and «a spherically layered mosaic». For a fixed mean correlation radius, the superexponential growth has been stronger for the layered mosaic.

Key words: statistical simulation, time asymptotics, random media, particle flux, Voronoi mosaic.

UDC: 519.245

Received: 18.11.2022
Revised: 23.12.2022
Accepted: 10.04.2023

DOI: 10.15372/SJNM20230304


 English version:
Numerical Analysis and Applications, 2023, 16:3, 229–235


© Steklov Math. Inst. of RAS, 2026