RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2022 Volume 25, Number 4, Pages 403–408 (Mi sjvm819)

This article is cited in 1 paper

On the sensitivity of the canonical angles of a unitoid matrix

Kh. D. Ikramova, A. M. Nazarib

a Lomonosov Moscow State University
b Arak University

Abstract: A unitoid matrix is a square complex matrix that can be brought to diagonal form by a Hermitian congruence transformation. The canonical angles of a nonsingular unitoid matrix $A$ are (up to the factor $1/2$) the arguments of the eigenvalues of the cosquare of $A$, which is the matrix $A^{-*}A$. We derive an estimate for the derivative of an eigenvalue of the cosquare in the direction of the perturbation in $A^{-*}A$ caused by a perturbation in $A$.

Key words: congruence transformation, unitoid, cosquare, canonical angle, circulant.

UDC: 512.643

Received: 02.02.2022
Revised: 24.03.2022
Accepted: 25.10.2022

DOI: 10.15372/SJNM20220405


 English version:
Numerical Analysis and Applications, 2022, 15:4, 331–335


© Steklov Math. Inst. of RAS, 2026