RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2018 Volume 21, Number 4, Pages 367–373 (Mi sjvm690)

This article is cited in 1 paper

Numerical solution of the discrete BHH-equation in the normal case

Kh. D. Ikramova, Yu. O. Vorontsovb

a LomonosovMoscow State University, Leninskie Gory, GSP-1, Moscow, 119991 Russia
b GlobusMedia Ltd., 1st Nagatinskii proezd 10, Moscow, 115230 Russia

Abstract: It is known that the solution of the semilinear matrix equation $X-A\overline XB=C$ can be reduced to solving the classical Stein equation. The normal case means that the coefficients on the left-hand side of the resulting equation are normal matrices. We propose a method for solving the original semilinear equation in the normal case that permits to almost halve the execution time for equations of order $n=3000$ compared to the library function dlyap, which solves Stein equations in Matlab.

Key words: continuous- and discrete-time Sylvester equations, BHH-equations, Schur form, conjugate-normal matrix, Matlab function dlyap.

UDC: 512.643

Received: 21.12.2017
Revised: 20.06.2018

DOI: 10.15372/SJNM20180402


 English version:
Numerical Analysis and Applications, 2018, 11:4, 293–297

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026