RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2018 Volume 21, Number 3, Pages 333–343 (Mi sjvm687)

This article is cited in 1 paper

Mixed methods for optimal control problems

T. Hou

School of Mathematics and Statistics, Beihua University, Jilin 132013, China

Abstract: In this paper, we investigate a posteriori error estimates of a mixed finite element method for elliptic optimal control problems with an integral constraint. The gradient for our method belongs to the square integrable space instead of the classical $H(\mathrm{div};\Omega)$ space. The state and co-state are approximated by the $P^2_0$-$P_1$ (velocity-pressure) pair, and the control variable is approximated by piecewise constant functions. Using a duality argument method and an energy method, we derive residual a posteriori error estimates for all variables.

Key words: elliptic equations, optimal control problems, a posteriori error estimates, a mixed finite element method.

MSC: 49J20, 65N30

Received: 13.09.2017
Revised: 31.01.2018

DOI: 10.15372/SJNM20180307


 English version:
Numerical Analysis and Applications, 2018, 11:3, 268–277

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026