RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2018 Volume 21, Number 2, Pages 201–213 (Mi sjvm678)

This article is cited in 8 papers

Tracking the solution to a nonlinear distributed differential equation by feedback laws

Yu. S. Osipovab, V. I. Maksimovc

a Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119991, Russia
b Steklov Mathematical Institute RAS, 8 Gubkina str., Moscow, 119991, Russia
c Krasovskii Institute of Mathematics and Mechanics UB RAS, 16 S. Kovalevskaya str., Yekaterinburg, 620990, Russia

Abstract: A nonlinear distributed second order equation is considered. An algorithm for tracking a prescribed solution based on constructions from the feedback control theory is designed. The algorithm is stable with respect to informational noise and computational errors. It is oriented to a large enough time interval, where the solution is considered.

Key words: distributed differential equation, feedback, tracking problem.

UDC: 517.977

Received: 31.10.2017
Revised: 01.12.2017

DOI: 10.15372/SJNM20180206


 English version:
Numerical Analysis and Applications, 2018, 11:2, 158–169

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026