Abstract:
We consider a strongly NP-hard problem of finding a family of disjoint subsets with given cardinalities in a finite set of points from the Euclidean space. A minimum of the sum over all required subsets of the sum of the squared distances from the elements of these subsets to their geometric centers is used as a search criterion. We have proved that if the coordinates of the input points are integer, and the space dimension and the number of required subsets are fixed (i.e. bounded by some constants), then the problem is a pseudopolynomial-time solvable one.