RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2015 Volume 18, Number 2, Pages 107–120 (Mi sjvm570)

This article is cited in 1 paper

Methods of identifying a parameter in the kernel of the first kind equation of the convolution type on the class of functions with discontinuities

T. V. Antonova

Institute of Mathematics and Mechanics Ural Branch of Russian Academy of Scienes, 16 S. Kovalevskaya str., Ekaterinburg, 620990, Russia

Abstract: In this paper, we propose a regular iterative method of identifying a numerical parameter in the kernel of the integral equation of the first kind of the convolution type. It is shown that an unambiguous identification of the parameter is possible when an exact solution has discontinuities of the first kind. The convergence theorem is proved, and an example of the equation with a parameter, for which the method constructed is applicable, is given.

Key words: ill-posed problems, localization of singularities, equation of the first kind, parameter identification.

UDC: 517.988.68

Received: 01.04.2014

DOI: 10.15372/SJNM20150201


 English version:
Numerical Analysis and Applications, 2015, 8:2, 89–100

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026